Anti-Derivatives

Example

1. Find an antiderivative of $\frac{1}{2 x}$.
2. True False Just like differentiation where we can use the chain rule/product rule/quotient rule/etc. to always be able to find the derivative of a function, we can find similar rules to do the same with finding an antiderivative.
3. True False There exists a unique anti-derivative.

Problems

4. Find an antiderivative of $5 e^{x}$.
5. Find an antiderivative of $x+\sqrt{x}$.
6. Find an antiderivative to $8 t^{3}+15 t^{2}$.
7. Find an antiderivative to e.
8. Find an antiderivative to $\cos u$.
9. Find an antiderivative to $\sin (2 t)$.

Riemann Sums

Example

10. Using 5 right endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,6]$.
11. True False The first derivative can tell you if a right endpoint Riemann sum is an overestimate or underestimate.
12. True False Left and right endpoint are the only kind of Riemann sums.

Problems

13. Using 5 left endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,6]$.
14. Using 6 left endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,4]$.
15. Using 6 right endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,4]$.
